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Abstract 

The 'frozen-lattice' model is a semi-classical approach 
for calculating electron diffuse scattering in crystals that 
has arisen from thermal vibration of crystal atoms. This 
quasi-elastic scattering approach is, however, unproven 
since its equivalence with the incoherent phonon- 
excitation model is not yet established. As quantitative 
electron microscopy is becoming a realistic method, it is 
necessary to examine the accuracy of the model. In this 
paper, based on a rigorous quantum-mechanical phonon 
excitation theory, it is proved that an identical result 
would be obtained using the frozen-lattice model and 
the formal phonon-excitation model if (i) the incoher- 
ence between different orders of thermal diffuse 
scattering is considered in the frozen-lattice-model 
calculation and (ii) the specimen thickness and the 
mean-free-path length for phonon excitation are both 
smaller than the distance travelled by the electron 
within the lifetime of the phonon (r0v, which is 5 l.tm for 
100 kV electrons). Condition (ii) is usually absolutely 
satisfied and condition (i) can be precisely accounted for 
in the calculation with the introduction of the mixed 
dynamic form factor S(Q, Q'). The conclusion holds for 
each and all orders of diffuse scattering, thus, the 
quantum-mechanical basis of the frozen-lattice model is 
established, confirming the validity, reliability and 
accuracy of using this model in quantitative dynamical 
electron diffraction and imaging calculations. It has also 
been shown that the frozen-lattice model is suitable for 
low-energy electrons. 

1. Introduction 

In high-energy electron scattering, the frozen-lattice 
model is assumed in describing diffuse scattering arising 
from the thermal vibration of crystal atoms (Hall & 
Hirsch, 1965), which means that, although atom vibra- 
tion is a time-dependent process, the crystal lattice 
appears as if in a stationary instantaneous configuration 
for an incident electron since the interaction time of the 
electron with the crystal is much shorter than the 
vibration period of the crystal atom, but the crystal 
lattice can be in another configuration for the next 
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incoming electron. Thus, for each lattice configuration, 
the scattering of the electron can be considered as a 
time-independent quasi-elastic scattering process and 
the finally observed diffraction pattern contributed to by 
millions of electrons is equivalent to a time average 
on the intensities calculated for the different lattice 
configurations. 

This model is the basis of many theoretical 
approaches for treating phonon scattering (or thermal 
diffuse scattering, TDS) in electron diffraction/imaging 
(Rossouw & Bursill, 1985; Fanidis et al., 1992, 1993; 
Dinges et aL, 1995; Wang & Cowley, 1990; Wang, 1991; 
Amali & Rez, 1997; Anstis et al., 1998; for a review, see 
Wang, 1995a, chs. 6-15), and in some cases quantitative 
matching with experimental observations have been 
obtained (Loane et al., 1991; Xu et al., 1991; Muller et al., 
1997). There are, however, two major concerns about 
this model. First, this is a quasi-elastic scattering model 
in which the electrons diffusely scattered by one lattice 
configuration are considered coherent although the 
scattering from different lattice configurations are 
treated incoherently. This deviates from the funda- 
mental result of quantum mechanics that phonon scat- 
tering is an incoherent process (Van Dyck, 1997). 
Secondly, this model treats a time-dependent atom 
vibration process as an integration of many mini time- 
independent processes, thus, a semi-classical concept is 
introduced in this quantum excitation process. Hence, 
the accuracy and adequacy of this model might need to 
be examined because quantitative analysis of electron 
diffraction and imaging data is desired in current 
research (Spence & Zuo, 1992). 

To answer these questions, the objective of this paper 
is to rigorously prove the equivalence of the frozen- 
lattice-model approach with the quantum-mechanical 
phonon excitation theory and to investigate conditions 
under which the equivalence holds, aiming at estab- 
lishing the theoretical basis of the model in quantitative 
electron microscopy. For convenience of the proof, we 
first outline the result of the TDS theory in the frozen- 
lattice model (§2). Following a rigorous approach using 
Yoshioka (1957) equations, a quantum-mechanical 
theory is given in §3. A comparison of the two theories 
gives the conditions under which the two theories are 
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equivalent. Finally, these conditions are examined in 
detail to establish the completeness of the proof. 

the time-independent potential V0, and it satisfies 

[ - ( h Z / 2 m o ) V  2 - e V  o - E]~P 0 = O. (3c) 

2. The frozen-lattice model for thermal diffuse scattering 
in electron scattering 

To properly treat TDS using the frozen-lattice model,  
the instantaneous crystal potential  V(r) is written as a 
sum of a t ime-averaged potential  Vo and a fluctuation 
term that characterizes the distortion of a crystal lattice 
owing to the displacement of an atom from its equili- 
br ium position: 

For the purpose of this paper, we define a density matrix 

pf(r, r') = (qJ(r)kO*(r')), (4) 

where ( ) represents an average over lattice configura- 
tions. The electron diffraction pattern including TDS 
can be calculated by taking a double Fourier transform 
of the density matrix 

V(r) = V0(r ) + A V(r), ( la)  

where the instantaneous crystal potential  is 

V(r) -- ~ Vx(r - r K - uK); ( lb)  
K 

r~ is the equi l ibr ium position of the xth atom in the 
crystal and u~ is its displacement;  the time average of the 
crystal potential  is 

= Z f dr#(r)  exp[-W~(r)] 
K 

x exp[2zrir • (r -- rK)], (lc) 

W K = 2rrz(]'r • ux] 2) is the Debye-Wal le r  factor, where ( ) 
stands for time average, i f ( r )  is the electron scattering 
factor and "r is a reciprocal-space vector; and the 
deviation potential  depending on the lattice configura- 
tion is 

a V(r)= V(r)-  V0(r). ( ld)  

The electron wave function scattered by a given crystal 
lattice is de termined by the t ime- independent  Schr6- 
dinger equation 

[(hZ/2mo)V 2 - e V  o - e A V  -- E]qJ = 0, (2) 

where E is the electron energy. For electron scattering, 
(2) is converted into an integral equat ion with the use of 
Green ' s  function G(r, r 1): 

* ( r ) =  qJo(r) W e  f dr lG(r ,  r l )AV(r l )O/(r l ) ,  (3a) 

where G is the solution of 

[ - ( h 2 / 2 m o ) V  2 - e V  0 - E]G(r, rl)  -- 3(r - rl), (3b) 

which corresponds to the electron wave coming from a 
point source at r' after being scattered by the crystal, and 
it can be solved for a general  case (Wang, 1998a); and 
qJ0(r) represents the elastic wave initiated by an incident 
plane wave of wave vector Ko after being scattered by 

I(r)  = f dr f dr' exp[ -2r r i z .  (r - r ')]&(r, r'). (5) 

The intensity distribution in the electron image can be 
calculated by 

I ( r ) =  f dr f d r ' p / ( r l , r 2 ) t ( r - r l ) t * ( r - r 2 )  , (6) 

where t(r) characterizes the information transfer 
property of the optical system in an electron micro- 
scope. Therefore,  the entire scattering process can be 
described by the density-matrix equation and the key 
here is to find its solution. We now derive the 
equation that governs the evolution of the density 
matrix. 

Starting from (3a) and using (AV(r)) = 0, we have 

pf(r, r') = p0(r, r') + e 2 f dr 1 f dr 2 [G(r, rl)G*(r' ,  r2) 

x (AV(rl)AV(r2)qf fr l )qJ*(r2))] ,  (7) 

where the density matrix of the Bragg scattered elec- 
trons is p0(r, r') = tP0(r )~(r '  ). Using the iterative solu- 
tion of (3a) and treating the different orders of diffuse 
scattering incoherently, which means  

(A V(rl) A V(r2) A V(r3) A V(r 4)) 

= ( A V ( r l ) A V ( r 2 ) ) ( A V ( r 3 ) A V ( r 4 ) ) ,  

(A  V A  V A  V A  V A V A  V) (8a) 

= ( A V ( r l ) A V ( r 2 ) ) ( A V ( r 3 ) A V ( r 4 ) )  

× (AV(rs)A V(r6) ) 

and similar relations hold for higher-order terms, it has 
been proved (Wang, 1996b) that 

( A V(r 1 )A V(r2)qJ(r 1 )qJ* (r2)) 

= (AV(rl)AV(r2))  (~(rt)~*(r2)).  (8b) 

Thus, (7) becomes 

py(r, r') = p0(r, r') + e 2 f dr I f dr 2 [G(r, rl)G*(r' ,  r2) 

× (A V(rl)A V(r2))pf(rl, r2) ]. (9) 

This is the equation that determines the solution of the 
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density matrix and it can be solved iteratively: 

pf(r, r') = Po(r, r') + e 2 f dr, f dr 2 [G(r, r,)G*(r', r2) 

× (A V(rl)A V(r2) > P0(rl, 1"2) ] 
+ea f d r a f  d r 2 f  d r 3 f  drn 

x [G(1., 1.1)G*(1.', r2)G(1" 1 , r3)G*(1. 2, 1.4) 
× (AV(rl)AV(r2)) 

x (AV(r3)AV(ra))Po(r3, r4) ] + . . . .  (10) 

where the higher orders of TDS are included. For the 
general purpose of the proof, all the higher-order terms 
are kept. On the other hand, the time (or configura- 
tional) average of AV(rl)AV(r2) is directly related to 
the mixed dynamic form factor S(Q, Q') by (Wang, 
1996a) 

(AV(r, t)AV(rl, t)) 

: f dQ f dQ' exp[2rri(r. Q - r 1 • Q')]S(Q, Q'), ( l l a )  

and for TDS with consideration of the phase correlation 
among atom vibrations, the mixed dynamic form factor 
is given by 

S(Q, Q') - ~ ~ exp[2rri(r~,- Q' - r~-Q)] 
K K' 

e e / t x f~ (Q) f~ , (Q)exp [ -WK(Q) -  W~,(Q )] 

x {exp[2F~,(Q, Q ' ) ] -  1}, ( l l b )  

where 

Foe(Q, Q') -- 2rr2((u,~ • Q)(uK,. Q')) (11c) 

is defined as a correlation function that is deter- 
mined by the coupling between vibrations of the x 
and x' atoms. The calculation of W~(Q) and 
F~,,(Q, Q') using the harmonic oscillators model has 
been given elsewhere (Sears & Shelley, 1991; Wang, 
1995a,b). Equation (9) is the main result of the frozen- 
lattice model and the introduction of the mixed dynamic 
form factor S(Q, Q') [see (3a)] automatically considers 
the incoherence between the different orders of diffuse 
scattering. We now derive a similar equation using the 
rigorous quantum-mechanical approach. 

3. Quantum-mechanical description of phonon 
excitation in electron scattering 

Phonon excitation is an inelastic scattering process that 
is most adequately described using Yoshioka's (1957) 
approach, in which the eigenstate of the incident 
electron-crystal system is expressed as a product of the 
eigenstate of the crystal with that of the incident 

electron, 

0~ 

• s(r, R) = ~ an(R)qL,(r ), (12) 
n = 0  

where a,, is the nth eigenstate of the crystal of energy e.; 
qJ0 is the elastic scattered wave of energy E and qL, is the 
inelastically scattered wave of energy E. = E - e. after 
exciting the nth crystal state; R represents the coordi- 
nates of crystal electrons (r a . . . .  rM). The fundamental 
equations that govern the generation, scattering and 
transition between/among the elastic wave and the 
inelastic waves are: 

[ - (h2 /Zmo)V 2 + H(x ) - E ] q %  = -  y~ Homqlm (13a) 
m----I 

and 

[ - (hZ/2mo)V 2 + S,,,, - E,,]q%, = - ~_. H,,mqJ m, (13b) 
ms~n 

where the transition matrix from state a,,, to a,, is 

H,, m = f a*,Ha,,, dR = (a,,lHlam). (13c) 

H is the interaction Hamiltonian between the incident 
electron with the electrons and nuclei in the crystal. 

Phonon excitation is a quantum transition process, in 
which the creation and annihilation of phonons are both 
possible. The excitation process can be adequately 
described using the transition matrix, similar to other 
inelastic electron transitions. Phonon excitation has the 
following characteristics. Firstly, the phonon energy is on 
the order of 0.1 eV or less, much smaller than the inci- 
dent energy of the electron (typically 100 keV), thus, the 
electron energy can be considered to be unaffected by 
the energy transfer due to phonon excitation, which 
means En ~ E but this energy loss has destroyed the 
coherence of the electron. Hence, the incoherence 
among all o f  the crystal states (e.g. different phonon 
states) must be preserved. Secondly, a phonon is char- 
acterized by a group of quantities of (q, wj, e), where q is 
the phonon wave vector, c% the phonon frequency 
belonging to the jth branch and e the polarization 
vector, which means that an excited state a,, is also 
characterized by (q, ooj, e), which is usually denoted as 
Ins ) in phonon excitation. Finally, the interaction 
Hamiltonian of the electron with the crystal is deter- 
mined by the instataneous crystal potential V as given by 
(lb),  thus, the diagonal matrix element H,,,, is 

11,,, ~_ Hoo. (laa) 

The approximation of H,,,, ~_ Hoo is considered to be 
almost exact since the excitation of phonons does not 
affect the time-averaged potential of the crystal. For the 
statistical distribution of phonons in the ground state at 
a finite temperature T, a weight factor must be added, 
which is related to the energy of the harmonic oscillator 
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by 

exp[--(n~ + 1 / 2 ) h m / / k n T  ] 
p(ns) -- 

Y~n =o exp[-(ns + 1/2)hco//kBT] 

= [1 - e x p ( - h w / / k B T ) ] e x p ( - n ~ h w / / k B r  ). (14b) 

A statistical average needs to be added accordingly, thus 

Hoo = - e  Y~(n, lV(r) ln,)p(ns) ,  (14c) 
ns 

where the sum of n, is over all of the phonon states and 
the number of phonons. Using the relationship between 
the electron scattering factor and the atomic potential, 
one has 

Hoo -- - e ~  (n s ~ '  V~( r -  rK-  ux)n,.)p(n~) 

= e ~ f dTfe(T)exp[2zr/¢ • (r -- rx)] 
K 

x ~--~(n~[exp(-2zriz. u,~)[ns)p(ns) 
r/s 

-- - e  ~ f dTfe(¢)exp[2zr/T • (r -- rx)] 
K 

x exp[-W~(z)], (14d) 

where a general relationship used in the above deriva- 
tion is (exp(x)) = exp[(x2)/2] if (x) = 0, which has been 
proved to be exact (Glauber, 1955), and the Debye- 
Waller factor is given by 

W~ = 2n 2 Y~(n,l(r. uK)21n,)p(n,). (14e) 
I1 s 

In comparison to the average crystal potential V0 given 
in (lc), one has 

Hnn ---- - e  V o , (14]:) 

in which the Debye-Waller factor is included. Therefore, 
(13a) and (13b) are transformed into 

[ - ( h 2 / 2 m o ) V  2 -  e V  o - E ] t P  o - - -  ~ Ho,, ,~, ,  , (15a)  
rn=l  

and 

[ - ( h 2 / 2 m o ) V  2 - e V  o - E ] q J  n - - -  Y~ Hnrnql m. (15b) 
m¢n 

The density matrix in this case is defined to be 

pp(r, r') = ~ ~n(r)qJ*(r'), (16) 
n=0 

where the sum over n is over all the crystal states 
including the elastic scattering state (i.e. n = 0, ground 
state). We now derive the equation that governs the 

motion of the density matrix. By using Green's function 
G(r, r') introduced in (3b), (15a) and (15b) are trans- 
formed into a unified integral equation 

~n(r) = ~0(r)~n0 - Y~ f drlG(r, rl)Hnm(ri)qJ(rl). (17) 
m~n 

From the physics point of view, electrons scattered by 
different crystal states have no phase relationship. This 
is the random phase approximation and it is introduced 
from the practical consideration of electron diffraction, 
which means the interference terms of the elastic wave 
qJ0(r) with the inelastic wave W,,,(r) vanish. Using this 
approximation, a subtitution of (17) into (16) gives 

pp(r,r') ---- Po(r, r') + f dr 1 f dr2G(r, rl)G*(r', r2) 

× ~)-~ ~_,~_, [Hn~(rl)H,n'n(r2)qJm(r~)qJ~n,(rz)]. 
n#O m m' 

(18) 

The summation in (18) contains the interference terms 
of different crystal states. Using the random phase 
approximation again, the interference between the m 
and m' states vanishes from the sums unless m = m'. 
Therefore, (18) is approximated by 

pp(r, r') = Po(r, r') -k- f dr I f dr2G(r, rl)G*(r', r2) 

(19) 

The following approximation is made in order to 
simplify this equation. In one-particle multiple-scat- 
tering theory, each time the electron inelastically inter- 
acts with the crystal atoms the collision is assumed to 
take place as if the crystal is in its ground state and the 
effect of previous collisions is very small. This condition 
is satisfied if r0v > A, where r 0 is the lifetime of the 
crystal excitation state, v is the electron velocity and A is 
the mean-flee-path length of phonon excitation. This 
approximation is mathematically expressed as 

~ ,  [H,m(rl)H*m(r2)] "~ ~_, [H,,0(rl)H*0(rz) I. (20) 
n#0 n#0 

It is simply called the 'ground-state' approximation and 
its meaning will be discussed later. Thus, equation (19) is 
approximated as (Wang, 1995a, ch. 14) 

pp(r, r') "~ Po(r, r') + f dr 1 f drzG(r, rx)G*(r', r2) 

X [n~S,coHno(rl)Hon(r2)][~mqJm(rl)~*(r2)] 

- p0(r, r') + f dr1 f drzG(r, rl)G*(r', r2) 

X [ Z  mno(rl)mon(r2)]Dp(rl, r 2 ) ,  ( 2 1 a )  
n#O 

which can be solved iteratively: 
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pp(r, r') -- po(r, r') + f dr, f dr 2 { G(r', r,)G*(r', r2) 

x [ ~o H.o(rl)/4o°(r2)] Po(r,, r2) ] 

+ f d r  1 f d r  2 f dr  3 f d r .  

{G(r, rl)G*(r', r2)G(r 1, r3)G*(r2, r4) X 

X [n~onn'o(r3)non'(r4) ] 

Po(r3 ,  r 4 ) ]  + . . . .  x 
/ 

(21b) 

As illustrated in Appendix A, with a proper under- 
standing of the ground state a0 and an introduction of 
statistical average, it can be proved that 

Y~ [Hno(rl)H*o(r2) = e2(AV(rl)AV(r2)), (22) 
n#0 

which means the sum over crossed transition-matrix 
elements is the time-averaged cross perturbation crystal 
potentials. This is a key equation that correlates the 
quantum model with the semi-classical model. There- 
fore, (21a) becomes 

pp(r, r') -v Po(r ' r') + e 2 f dr 1 f dr 2 G(r, rl)G*(r', r2) 

X (AV(rl)AV(r2))pp(rl, r2) , (23a) 

which can be solved iteratively: 

pp(r, r') _~ Po(r, r') + e 2 f dr 1 f dr 2 [G(r, rl)G*(r', r2) 

x (AV(rl)AV(r2))po(rl, r2) ] 

+e4 f d r l f  dr2f  dr3f  dr4 

x [G(r, rl)G*(r', r2)G(rl, r3)G*(r2, r4) 

× (AV(rl)AV(r2)) 

× (AV(r3)AV(ra))Po(r 3, r4)] + . . . .  (23b) 

This is the identical form to (10), therefore, the density 
matrix calculated based on the frozen-lattice model is 
equal to the density matrix calculated following the 
phonon-excitation model in quantum mechanics: 

pp(r, r') = pf(r, r'). (24) 

This identity holds for all of the orders and each order of 
the diffuse scattering. Therefore, the result calculated 
using the frozen-lattice model is identical to the result 
calculated using the phonon-excitation model if the 

approximations made in §2 and §3 hold. We now eval- 
uate these approximations. 

4. The approximations  and condit ions  

4.1. The incoherence between different orders of diffuse 
scattering 

The major approximation introduced in the calcula- 
tion of the density matrix in the frozen-lattice model is 

(A V(r I )A V(r2)A V(ra)A V(r4) 

= (AV(rl)AV(r2))(AV(r3)AV(r4)). 

In electron diffraction, the first-order scattering inten- 
sity is determined by (AV(rl)AV(r2)) and the second 
order is by (AV(rl)AV(r2))(AV(r3)AV(r4)), which can 
be interpreted as the second order being a double 
scattering of two incoherent first-order events. The 
approximation simply means the scattering produced by 
the different orders of diffuse scattering (such as A V 2, 
A V 4 and A V 6 etc. or multiple diffuse scattering) must 
be treated as incoherent, and the higher-order scat- 
tering is the result of multiple incoherent first- 
order-scattering events. The second-order scattering, for 
example, is an incoherent double first-order scattering 
(e.g. (AV4)=(AV2) (AV2) )  and (AV6) = [ ( A V  2 ) 
x (AV 2) (AV2)] for the third-order scattering etc. (Wang, 
1996b). This is in fact the practical situation and the 
approximation holds exactly. This approximation also 
reduces the coherence effect in the quasi-elastic scat- 
tering process. The consequence of this approach means 
that any theory that has been developed with use of the 
mixed dynamic form factor S(Q, Q') instead of using the 
real space A V(rl) has correctly considered this inco- 
herence. Thus, the corresponding calculation is equiva- 
lent to the result of quantum phonon-excitation theory. 

Calculations using the frozen-lattice model have 
frequently been performed in the multislice theory 
(Cowley & Moodie, 1957) following two different 
approaches. One approach (Wang, 1991; Loane et al., 
1991) assumes that the entire crystal in one instanta- 
neous configuration is a frozen lattice and the diffuse 
scattering generated in the entire volume is coherent but 
the final intensity is an incoherent sum over the inten- 
sities contributed by different lattice configurations. The 
other approach assumes that the diffuse scattering 
generated within one thin crystal slice is coherent but 
incoherence is preserved for the scattering generated in 
different slices (Dinges et al., 1995; Wang, 1995b). The 
former has properly considered the multiple-diffuse- 
scattering effect but ignored the incoherence between 
the different orders of diffuse scattering. This is likely to 
be an excellent approximation for thin specimens. The 
latter treats the incoherence properly but the multiple 
diffuse scattering among slices is neglected. The current 
study shows that the most significant error in the frozen- 
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lattice-model calculation is the 'quasi-elastic' approx- 
imation, which can be compensated for with the intro- 
duction of the mixed dynamic form factor. 

4.2. The 'ground-state' approximation 

The approximation made in the phonon excitation 
model is the so-called 'ground-state'  approximation. The 
approximation means that each time the electron 
inelastically interacts with the crystal atoms the collision 
is assumed to take place as if the crystal is in its ground 
state and the effect of any previous collision is very 
small. For a thin crystal of thickness d = 100 nm, the 
duration that the electron interacts with the crystal 
atoms for a 100keV electron is on the order of 
At _~ 6 x 10 -15 s. Theorectical calculation has found 
that the lifetime of a phonon is on the order of 
l" o = 10 -13 S (Bj6rkman et al., 1967; Woll & Kohn, 1962). 
The limited lifetime of phonons is due to anharmonic 
effects in atom vibrations. The lifetime of a phonon is 
much longer than the interaction time At of the electron 
with the crystal, thus, there is no phonon decay during 
the scattering of an incident electron. On the other 
hand, for a modern field-emission source, the electron 
flux is on the order of 1012 e s -1, thus, the average time 
interval between two successive incident electrons is 
10 -12 S, much longer than the lifetime of the phonon. 
The phonons generated by the previous incident 
electron have annihilated before the next incoming 
electron interacts with the crystal. Therefore, the crystal 
is in its ground state for each incident electron. 

The conditions for this approximation to be held are: 
the lifetime of the photon is larger than the time 
required to create a new phonon, e.g. r 0 > A/v  
(or r0v > A); and the electron-specimen interaction 
time is shorter than the lifetime of the phonon, e.g. 
d < r0v. The first condition depends on the energy of 
the incident electron and the second condition is satis- 
fied in almost all of our experiments. The conditions 
r0 v > A and d < r0v mean that the specimen thickness 
and the mean-free-path length for phonon excitation are 
both required to be smaller than the distance travelled 
by the electron within the lifetime of the phonon. For a 
100 kV electron, r0v ~ 5 lam. Therefore, both conditions 
are absolutely satisfied in all of our current experiments. 

On the other hand, the average number of phonons in 
a crystal is rather large at ambient temperature, thus, 
adding or subtracting a few phonons due to the elec- 
t ron-phonon interaction in the whole system have 
almost no effect on the potential distribution in the 
crystal. This is always assumed in electron scattering. 
Therefore, the ground-state approximation is excellent. 

Finally, the random phase approximation introduced 
in (18) has been considered an excellent approach 
although it is an argument purely based on the physical 
picture (probably without mathematical proof). We 

believe this approximation also holds for phonon scat- 
tering. 

4.3. Frozen-lattice model for low-energy electrons 

The quantum phonon-excitation theory presented in 
§3 holds if the specimen thickness and the mean-free- 
path length for phonon excitation are both smaller than 
the distance travelled by the electron within the lifetime 
period of the phonon. We now examine these conditions 
for low-energy electrons. Taking an electron with 100 eV 
energy as an example, its moving speed v is 0.0198 c, 
where c is the speed of light, and the lifetime of a 
phonon is 10 -13 s, independent of electron energy, the 
electron mean-free-path length and the specimen 
thickness are both required to be smaller than 
r0v = 600 nm, which is satisfied in almost all of the low- 
energy experiments. Thus, the density-matrix equation 
given in (23a) holds even for low-energy electrons. On 
the other hand, since (23a) is identical to (9), which 
means that the calculation using the frozen-lattice model 
is also valid for low-energy electrons. This is a rather 
surprising result because the frozen-lattice model was 
proposed for high-energy electrons with a simple 
assumption that the electron-specimen interaction time 
is much shorter than the vibration period of the crystal 
atoms. To understand this result, the penetration depth 
of a 100 V electron into the specimen is assumed to be 
less than 10 nm, the electron-specimen interaction time 
is "~ 1.7 × 10 -15 s, much smaller than the vibration 
period of an atom (typically of 10 -13 S). Therefore, the 
theoretical proof given in §2 and §3 has expanded the 
energy range in which the frozen-lattice model is 
applicable. 

4.4. The first-order diffuse scattering result 

It is worthwhile pointing out that the above two 
approximations are not needed if the specimen is much 
smaller than the mean-free-path length of thermal 
diffuse scattering so that the single diffuse scattering 
approximation holds. From (10) and (23b), the first- 
order diffuse scattering terms are identical regardless of 
the lifetime of the phonon. Therefore, the first-order 
diffuse scattering based on the frozen-lattice model 
gives exactly the same result as the quantum phonon- 
excitation theory. This simply proves the validity of the 
existing theories for thin specimens. 

Based on current understanding, the density-matrix 
theory is likely to be the most precise approach for 
calculating the diffraction patterns or images of phonon- 
scattered electrons, but the calculation has to be carried 
out iteratively in order to include high-order diffuse 
scattering. 

Before reaching a conclusion, we wish to comment on 
the theory developed by the author for recovering high- 
order diffuse scattering in dynamical calculations 
(Wang, 1996b). By inclusion of a complex potential in 
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dynamical calculation o f  the elastic wave, it has been 
proved analytically that the higher-order diffuse scat- 
tering is fully recovered in the calculations using the 
equation derived under the distorted-wave Born 
approximation. The proof was based on the frozen- 
lattice model with consideration of the incoherence 
between different orders of diffuse scattering. We can 
claim now that the current study proves the 
quantum-mechanical equivalence of the proposed 
theory. 

5. C o n c l u s i o n s  

Based on rigorous Green-function and density-matrix 
theories, it has been proved that the calculation based on 
the frozen-lattice model for thermal diffuse scattering in 
electron diffraction gives an identical result to that 
obtained from the phonon excitation model if the 
following two conditions are satisfied: (i) the inco- 
herence between different orders of thermal diffuse 
scattering is considered in the frozen-lattice-model 
calculation; and (ii) the specimen thickness and the 
mean-free-path length for phonon excitation are both 
smaller than the distance travelled by the electron 
within the lifetime of the phonon. Condition (ii) is 
absolutely satisfied by both low- and high-energy elec- 
trons, and satisfying condition (i) is the most critical 
requirement in the frozen-lattice-model calculation. 
More specifically, the diffuse scattering produced by the 
different orders of diffuse scattering (such as AV 2, A V  4 

and A V  6 etc. or multiple diffuse scattering) must be 
treated as incoherent in the frozen-lattice model, and 
the higher-order scattering is the result of multiple 
incoherent first-order-scattering events. This inco- 
herence can be precisely accounted for with the intro- 
duction of the mixed dynamic form factor S(Q, Q'), a 
key quantity for inelastic electron scattering. A new 
multislice approach has been proposed recently in which 
the multiple diffuse scattering and the incoherence 
effects are both accounted for using the S(Q, Q') func- 
tion (Wang, 1998b). 

The conclusion, reached directly using the integral 
form of the Schr6dinger equation without making the 
high-energy approximation or ignoring the back 
scattering, holds for each and all of the orders of diffuse 
scattering if they are treated incoherently, thus, the 
quantum-mechanical basis of the frozen-lattice model is 
established. The frozen-lattice model can also be 
used to calculate the diffuse diffraction o f  low- 
energy electrons because their effective penetration 
depth is relatively small. This conclusion confirms the 
validity, reliability and accuracy of using the frozen- 
lattice model in numerous dynamical theories of phonon 
excitation in electron diffraction and imaging of thin 
specimens. 

A P P E N D I X  A 
In this section, our aim is to prove that 

[Hno(rl)H*o(r2) ] -- e z (A V(rl)A V(r2) ) . 
n¢0 

Starting from the left-hand side and using a complete- 
ness equation of 

l a . ( R z ) ) ( a . ( R 1 ) l  - -  a(R2 --  R1),  
n 

one has 

~_. Hno(r,)H*o(r2) 
n#O 

= Y~ (ao(R2)lH(r2, R:)Ia,,(R2)) 
n #4) 

× ( a n ( R 1 ) ] H ( r  1, R l ) ] a o ( R 1 ) )  

= (ao(R:)lH(r :, R2)[ ~ la"(Rz))(a'(R1)l 

- [ao(R2) ) (ao(R1)l]H(rl, R1)lao(R1)) 

= (ao(R2)[H(r 2, R2)[3(R2 - R I )  

- ]ao(R2) ) (ao(R1)[]  H ( r l ,  Rl)[ao(R1)) 

= ( a o ( R 1 ) [ m ( r  2, R 2 ) H ( r l ,  R1) [ao(R1) )  

- (ao(R2)[H(r2, Rz)lao(R2)) 

x ( a o ( R 1 ) [ H ( r  1, R1) [ao(R1)  ). (25)  

Using the Fourier transform of H = - e V ,  which is 

n( r )  ---- -eV(r)  

= - e  ~ f dQ exp[2ni(r - rK). Q]f~(Q). (26) 
K 

equation (25) can be converted into the form 

[H,o(ra)S*o(r2)] 
n#o 

= e: f dQ f dQ' exp[2ni(r 1 • Q - r : .  Q')] 

x S'(Q, Q'), (27) 

where the S' function is given by 

S'(O, O') 

= ~ ~ exp[2n'i(r,,- Q' - rK. Q)]f~(Q)f~,(Q') 
d 

x {(aolexp[2ni(Q'.u K, - Q.  u~)]lao) 

- (aolexp(2niQ'. u~,)la 0) 

× (a01exp(-2n'iQ. u~)la0)} 

= ~ ~ exp[2ni(rK,. Q ' -  r~. Q)]f~(Q)fe(Q,) 
r x' 

x {exp[-2na(a01Q' • u¢ - Q-u~)ala0)] 

- exp[-2n 2 (a01(Q" u~, )2 la0)] 

× exp[-2n "2 (a01(O • u~)2 la0)]}. (28) 

From the notation, it may be misunderstood that there is 
no phonon in the ground state la0). This is true at 
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absolute zero ( T  - 0 K ) .  In practice, any system is not 
isolated from the environment ,  thus, energy exchange is 
involved in electron diffraction (Fanidis et al., 1992, 
1993). To incorporate  the statistical distribution of 
phonons  in the ground state at a finite temperature,  the 
terms in (28) need to be modified to represent  the 
expectat ion value, hence 

(a0](Q'. uK,)Zla0) = y~(n,.l(Q',  u,~,)2ln,)p(n,). (29) 
?is 

Therefore,  (28) becomes 

S'(Q, Q') 
_ e e Q ,  -- y"  y~exp[2rc/(L,.  Q ' -  r~. Q)]f~(Q)f~,( ) 

K g ! 

× e x p [ - W K ( Q ) -  W~,(Q')] 

x {exp[2F~K,(Q, Q')] - 1 } (30) 

where 

F~K,(Q, Q') = 2n "2 ~(n,.l(uK • Q)(u~, • Q')lns)p(ns). (31) 
?1 s 

Equat ion  (31) gives the same result as defined in ( l l c )  
under  the harmonic  oscillators approximation.  A 
comparison of (31) and ( l l b )  gives 

S(Q, Q') - e2S'(O, Q'), (32) 
o r  

y~ [H?io(rl)H~*o(r2) ] -- ez(AV(rl)AV(r2)). (33) 
n#0 
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